

Sharable Ontologies as a Basis for Communication and
Collaboration in Conceptual Modeling

Jeffrey M. Bradshaw, Peter D. Holm, John H. Boose
Research & Technology, Boeing Computer Services

P.O. Box 24346, M/S 7L-64, Seattle, WA 98124; (206) 865-3422; jbrad@atc.boeing.com

Douglas Skuce, Timothy C. Lethbridge
Department of Computer Science, University of Ottawa

Ottawa, Ontario, Canada K1N 6N5; (613) 564-4518; doug@csi.uottawa.ca

ABSTRACT
We are interested in improving collaboration among researchers, domain experts, and knowledge
engineers through better knowledge sharing. Building models is not only a way to formulate
domain knowledge, but serves more importantly as a means to communicate and come to
understand the evolving problem space. An important prerequisite to effective communication is
mutual agreement on important terms and concepts, the ontology of the domain. We give an
overview of the CODE4 conceptual modeling representation and the DDUCKS modeling
environment. We focus on how different classes of ontologies are developed within the tools: top
level ontologies with very general concepts, ontologies with modeling concepts, and ontologies
for particular domains. We are evaluating theories and contexts as mechanisms for partitioning
and managing relationships between groups of concepts. We describe some of the mechanisms
we are exploring for exchanging these ontologies with other research groups, and conclude by
reviewing important research issues for future work.
1. INTRODUCTION: MODELING AS COMMUNICATION
Knowledge acquisition is largely a matter of communication. It begins when experts in some
domain determine that they have valuable information to share. It evolves as participants
collaborate to define models that represent a common understanding of certain aspects of the
domain. It succeeds when participants can use these models effectively to promote and enrich
communication.
This view of knowledge acquisition as modeling is at odds with early knowledge acquisition
metaphors that stressed notions of expertise transfer and knowledge acquisition bottlenecks
(Ford & Bradshaw, in press) . Clancey (Clancey, in press) has explained why the bottleneck
metaphor is so misleading. He shows that knowledge acquisition is not a matter of squeezing
pre-defined chunks of knowledge through a narrow communication channel, but “usually

involves inventing new languages for modeling previously unarticulated experience.” Clancey’s
arguments parallel those of Michael Reddy (Reddy, 1979) who criticizes the conduit metaphor
as a characterization of language and meaning:

“When one person talks to another, words do not come out of the speaker’s mouth as
packages full of direct report on facts, which the hearer then opens up to discover the
fully packed meaning inside. On the contrary, the speaker forces air out of the lungs and
shapes the molecules with the vocal apparatus; these molecules vibrate on the hearer’s
eardrums, sending neurochemical impulses to the brain. The hearer then constructs a
model of what the speaker is thought to have said. People understand each other and
communicate not by direct conveyance at all, but by broadcasting signals, which
themselves evoke mental models.” (Frawley, 1992)

Modeling is a contextual and purposive activity—that is, to be involved in modeling is
necessarily to be engaged in using the model in some particular setting for particular reasons that
together determine what should be modeled, how to model it, and what can be ignored
(Thimbleby, 1990; Winograd & Flores, 1986) . Together, the criteria of purpose and cost-
effectiveness determine how additional pragmatic issues should be resolved such as who the
users of the model are, how it ought to be presented in order to be both usable and useful, and
how it will be maintained over its projected lifetime (Rothenberg, 1989) .
From a constructivist perspective, a model is not a “picture” of the problem, but rather a device
for the attainment or formulation of knowledge about it (Kaplan, 1963) . Indeed, sometimes the
most important outcome of the modeling process may not be the model itself, but rather the
insight we gain as we struggle to articulate, structure, critically evaluate, and rely on it (Moore &
Agogino, 1987) . Thus, the value of such an effort derives not simply from a final “correct’”
representation of the problem, but additionally from our success in framing the activity as a self-
correcting enterprise that can subject any part of the model to critical scrutiny, including our
background assumptions. We must ask ourselves not only, How do we know the model is
correct? (every model is an incorrect oversimplification); but also, How useful is the model (and
the modeling process) in facilitating our understanding of the domain?
Hence we see that much of the power of models lies in their ability to function as tools for
thought, or cognitive artifacts (Norman, 1992) . Cognitive artifacts can enhance human
representational functions through their ability to maintain, display and operate upon
information. They can change the way tasks get done by changing the actions required, and
distributing actions across time (precomputation) and people (distributed cognition). Because of
the major impact that particular representations chosen can have on problem solving, we ought to
design the internal and external form of our models with great care and attention
(Chandrasekaran, Narayanan, & Iwasaki, in press; Larkin & Simon, 1987) . We also must attend
to the transformations of representational form that ought to occur to support different aspects of
the modeling process (Gaines, Shaw, & Woodward, in press) .
Attention to the use of models as cognitive artifacts enhancing communication and cognition is
reflected in the research in the field of conceptual modeling:

“Conceptual modeling is the activity of formally describing some aspects of the physical
and social world around us for purposes of understanding and communication. Such

descriptions, often referred to as conceptual schemata, require the adoption of a formal
notation, a conceptual model in our terminology. Conceptual schemata capture relevant
aspects of some world, say an office environment and the activities that take place there,
and can serve as points of agreement among members of a group, for example the
workers in that office, who need to have a common understanding of that world.
Conceptual schemata can also be used to communicate that common view to newcomers,
through a variety of graphic and linguistic interfaces. Conceptual modeling has an
advantage over natural language or diagrammatic notations in that it is based on a formal
notation which allows one to ‘capture the semantics of the application’. It also has an
advantage over mathematical or other formal notations developed in computer science
because unlike them, conceptual modeling supports structuring and inferential facilities
that are psychologically grounded. After all, the descriptions that arise from conceptual
modeling activities are intended to be used by humans, not machines.” (Mylopoulos,
1991)

Unfortunately, until recently developers of modeling and knowledge representation tools have
paid scant attention to the needs of the kind of users who are building a model with the intent of
coming to understand some domain. For example, traditional data modeling tools introduce
assumptions about the way conceptual schemata will be realized on a physical machine or
database implementation, which constrain and confound domain experts preferring to leave these
considerations to others. Furthermore, the need of such users to model the “real world” drives a
requirement for much richer representations than modeling tools typically afford. Knowledge
representation tools, on the other hand, almost always introduce the assumption that the resultant
knowledge bases will be directly usable for some computational task. Considerations of
efficiency and performance inevitably lead to limitations in the richness and flexibility of the
knowledge representation. No less important, there are few modeling tools that have been
optimized for usability. Tools are cumbersome, unnatural, and difficult to use without
specialized training and extensive experience. The comprehensibility and succinctness of textual
and graphical notations chosen is rarely considered (Bradshaw & Boose, 1992; Chandrasekaran,
Narayanan, & Iwasaki, in press) . As a result, many potential users abandon modeling tools
altogether and use simple graphical drawing tools instead.
Elsewhere we have discussed our ideas about how the application of certain general principles of
knowledge representation and user-interface design can make knowledge acquisition tools more
usable and extensible by non-experts (Bradshaw, Ford, & Adams-Webber, 1991; Ford,
Bradshaw, Adams-Webber, & Agnew, in press; Skuce, in pressb) . Section 2 provides an
overview of selected aspects of the CODE4 conceptual modeling representation and the
DDUCKS modeling environment. We discuss the meaning triangle (Ogden & Richards, 1923)
as a way to help us understand how objects in the “real world” relate to objects in the conceptual
model and their expression in a particular syntax. We examine how tools and representations for
conceptual modeling can satisfy requirements for richness, flexibility, and tailorability.
In Section 3, we discuss preliminary results in our efforts to create sharable specifications for the
concepts upon which our applications depend. In this we join with a number of researchers who
have argued the benefits for making conceptual commitments explicit in the form of
ontologies(Gruber, 1991; Gruber, 1992a; Gruber, 1992b; Lenat & Guha, 1990; Neches, Fikes,

Finin, Gruber, Patil, Senator, & Swartout, 1991; Neches, Foley, Szekely, Sukaviriya, Luo,
Kovacevic, & Hudson, 1992; Skuce & Monarch, 1990) :

“Consider a planning system based on a theory in which plans are composed of ‘steps’
which form ‘sequences’ with specific kinds of ‘resource dependencies’, and that the
search for plans is guided by ‘ordering heuristics’ and ‘optimization criteria.’ If one
wished to use this planning system, one would need to understand what these words
mean, and build a knowledge base in which domain-specific knowledge was formulated
in terms that the planning program also understands.” (Gruber, 1992a)

The term ontology is borrowed from the philosophical literature where it describes a theory of
what exists. Such an account would typically include terms and definitions only for the very
basic necessary categories of existence. However, the common usage of ontology in the
knowledge sharing and reuse community is as a vocabulary of representational terms and their
definitions at any level of generality. A knowledge-based system’s “ontology” defines what
exists for the program—in other words, what can be represented by it (Gruber, 1992b) .
We focus on how different classes of ontologies are developed within the tools: top level
ontologies with very general concepts, ontologies with modeling concepts, and ontologies for
particular domains. We discuss theories and contexts as mechanisms for partitioning and
managing relationships between groups of concepts. We describe some of the mechanisms we
are exploring for exchanging these ontologies with other research groups, and conclude by
reviewing important research issues for future work.
2. AN OVERVIEW OF CODE4 AND DDUCKS

2.1. Three-Schema Architectures, Predication, and the Construction of Meaning
There are two general approaches to meaning: one which posits a direct relation between
symbols and their referents (Haiman, 1985; Wittgenstein, 1974/1918) , and another (now
dominant) approach which posits an indirect relation(Frawley, 1992; Jackendoff, 1983; Lakoff,
1987; Perez, 1992; Sowa, 1984) . The roots of the indirect view are usually traced from Aristotle
through the more recent conceptualist position proposed by Ogden and Richards (Ogden &
Richards, 1923) . They characterized meaning as a semiotic triangle (or meaning triangle), a
relation between a symbol (term, icon) and a referent (object, extension), mediated by thought
(concept, intension, idea, sense) (see Figure 1).1

1 As Sowa (Sowa, 1984) observes, the aspects of meaning described by Ogden and Richards
reflect the distinction between semantic and episodic memory (Tulving, 1972). Semantic
memory, which stores universal principles corresponding to dictionary definitions, is related to
intensional meaning. Episodic memory, which stores facts about individual things and events
corresponding to history and biography, is related to extensional meaning.

Figure 1. The meaning triangle (Ogden & Richards, 1923) .

The meaning triangle is useful for understanding how objects in the “real world” relate to objects
in the conceptual model and their expression in a particular syntax (Fulton, 1992) . Figure 2
shows a set of interlocking meaning triangles illustrating relationships between employees. We
have inverted the triangle so that referents (“real world” objects) appear near the bottom of the
figure, symbols (the abstract syntax) in the upper left, and mediating concepts (the abstract
objects constituting an abstract set-theoretic ontology) in the upper right. Each term in the model
(Tom, Betty) is linked to a corresponding object in the domain of discourse and a referent in the
world. The predicate works for expresses the set of all occurrences and refers to the three
situations in the world being described. The sentence Tom works for Betty, on the other hand, is
related to a single occurrence of the predicate. An abstract set-theoretic semantics is defined by
the mapping between the abstract objects and the abstract syntax.

Figure 2. Interlocking meaning triangles show how objects in the “real world” relate to objects

in the conceptual model and their expression in a particular syntax (Fulton, 1992) .

Thought

Symbol Referent

is expressed by refers to

stands for

Sentence
Collection

Sentence

Predicate

Terms

Abstract
Syntax

Abstract
Semantics

Abstract
Objects

Tom works for Betty

works for

Tom
Betty

Occurrences
(of “working for”)

Objects of
Discourse

Domain of
Discourse

“Real World” Objects

Tom works for Betty
Mary works for Phil
Emerson works for Radi

While a relatively neutral, purely descriptive model of the situation like the one above may be
useful for some purposes, it leaves many potential questions unanswered. For example, we may
want to get judgmental, presciptive advice from a model to help us determine whether Tom
should be working for Betty or whether we have the optimal number of managers in the
organization. To answer these questions, we must construct an interpretation of the situation
within a more specialized modeling or problem-solving framework.
Let’s say that we are trying to make a decision between Betty, Phil, and Radi as supervisor for
Tom. Thus our three options are Tom works for Betty (d1), Tom works for Phil (d2), and Tom
works for Radi (d3). We can represent these options in a variety of ways: for example, as
elements in a repertory grid, as alternatives in an influence diagram or decision tree, or as
possibilities in a possibility table (Figure 3). While we have argued previously that none of these
representations are fundamentally incompatible (Bradshaw & Boose, 1990; Bradshaw,
Covington, Russo, & Boose, 1991) , they all require different assumptions, vocabulary, and
modes of interaction. Within our knowledge acquisition tool, we do not want to commit
ourselves to any one of them to the exclusion of the others, because each assists in
complementary ways with different aspects of the decision-making process. Furthermore, within
The Boeing Company, heterogeneity of tools and notations, and differences in terminology are a
fact of life. We have frequently observed the same domain information being used in several
ways within different modeling frameworks as data is passed from organization to organization.
We need a way to translate between these frameworks without loss of meaning.

Figure 3. Options for Tom’s manager can be represented in different ways.

d1. Tom works for Betty
d2. Tom works for Phil
d3. Tom works for Radi

D V

A B

C

G

E F

Influence Diagram
(Alternatives, Outcomes, Values)

Repertory Grid
(Elements, Constructs)

d1

d2

d3

Possibility Table
(Alternatives, Possiblities, Criteria)

D W X Y Z
z1
z2

d1
d2
d3

x1
x2
x3

w1
w2
w3
w4

y1
y2
y3
y4d4

A
A1
A2

L

d1

d2

Decision Tree
(Alternatives, Outcomes, Values)

The problem is one of semantic unification, a challenging research topic that is currently being
tackled by several research groups (Fulton, Zimmerman, Eirich, Burkhart, Lake, Law, Speyer, &
Tyler, 1991; Genesereth & Fikes, 1992; Gruber, 1992a; Gruber, 1992b; Perez, 1992; Sowa &
Zachman, 1992) . While we do not presume to have an answer to the general problem of
semantic unification, we are exploring some relevant issues that bear on the development of our
knowledge acquisition tools.
Figure 4 shows a pair of cascading meaning triangles illustrating processes of abstraction,
interpretation, and expression in modeling. In order to facilitate reuse, a relatively neutral
domain model is constructed by abstraction based on a mental projection of the real world. The
domain model may in turn be interpreted within a more specialized modeling or problem-solving
framework, and expressed in terms of a particular visual or textual syntax. The same domain
model may be interpreted in multiple ways (e.g., in terms of personal construct theory vs.
decision theory); the same interpretation theory may be expressed differently (e.g., as decision
trees vs. influence diagrams); and the interpretation model may itself be interpreted within
another framework (e.g., a decision-theoretic model interpreted by a domain-specific explanation
framework).2

Figure 4. Cascading meaning triangles illustrating processes of abstraction, interpretation, and

expression in modeling.
We discuss now two central problems in building tools to support conceptual modeling:

1. Defining a conceptual modeling representation that is sufficiently rich and flexible
(Section 2.2).

2 One way to think about the differentiation between the relatively “neutral” domain model and
the interpretation models specialized to different modeling and problem-solving strategies is that
it provides a way to address some of the requirements that led (Guha & Lenat, 1990; Lenat &
Guha, 1990) to define separate epistemological and heuristic levels in Cyc.

Domain
Model

“Real World”
Objects

Syntactic
Expression
of Domain

Model

Abstraction

Interpretation

Expression

Interpretation
Model

Syntactic
Expression of
Interpretation

Model

Expression

2. Defining a capability for users to create mappings between different interpretations and
between different expressions of the model (Section 2.3).

2.2. The CODE4 Conceptual Modeling Representation
Ideally, we want a representation that approaches natural language in its ability to describe the
subtle details and fluid nature of experience, yet can also be translated straightforwardly into
formal, computer-based representations. While we are still so far from the ideal that we do not
know even if it will ever be possible to approximate it, a number of significant strides in
knowledge representation research have been made over the past few years (Borgida, Brachman,
McGuinness, & Resnick, 1989; Gaines, 1991; Genesereth & Fikes, 1992; Neches, Fikes, Finin,
Gruber, Patil, Senator, & Swartout, 1991; Perez, 1992; Sowa, 1984; Sowa, 1991) . In this
section, we briefly describe some of the basic features of the CODE4 conceptual modeling
representation, which forms the heart of our approach.
CODE4 is a conceptual modeling tool that has been developed at the University of Ottawa
(Lethbridge, 1991; Lethbridge & Skuce, 1992a; Lethbridge & Skuce, 1992b; Skuce, 1991;
Skuce, in pressb; Skuce & Lethbridge, submitted for acceptance; Skuce & Monarch, 1990) . A
collection of integrated tools support the important and frequently overlooked aspects of
conceptual, ontological, and terminological analysis. All these tools are available through a rich,
graphical interface.
CODE4 has been used in a number of university and industrial settings as a stand-alone tool. At
The Boeing Company, however, we are using the tool in a somewhat different manner. We have
developed our own user-interface in the DDUCKS modeling environment, while relying on
CODE4 as a back end implementing the conceptual modeling representation. The Boeing group
is also developing extensions to the representation to allow the system to make use of additional
inferencing and representation facilities similar to those found in Sowa’s (Sowa, 1991)
conceptual graphs and Gaines’ (Gaines, 1991) KRS, which interpret taxonomic and entity-
relationship structures in terms of intensional and extensional logics. Currently, any CODE4
representation can be mapped to a conceptual graph, for which semantics exist (Skuce &
Lethbridge, submitted for acceptance) .
Below, we present a brief summary of some of the basic concepts of the language, as extended in
DDUCKS,. See(Lethbridge & Skuce, 1992a; Skuce & Lethbridge, submitted for acceptance) for
a more complete discussion of knowledge representation in CODE4.
Things, concepts., types and individuals. Concepts in a CODE4 knowledge base are used to
represent things in the world. Things are either types or individuals. Both types and individuals
belong to one or more types (the type of “type” is type).
Names and unique ID’s. Types and individuals have properties and are referred to by terms.
The concept’s main term is always its name. Concepts always have a term corresponding to a
unique ID. The unique ID allows two concepts with the same name to be distinguishable.
Concept hierarchies. Types and individuals are arranged a kind-of hierarchy or taxonomy from
more general to more specific concepts. Figure 5 shows the hierarchy of basic primitives
available in CODE4. Types may have either individuals or more specific types as their
subconcepts. Individuals may not have subconcepts.

Figure 5. The hierarchy of basic primitives available in CODE4

Inheritance, multiple inheritance and disjointness. Subconcepts typically inherit the
properties of their superconcepts. However users have extensive control over the specific aspects
of inheritance, if desired. Concepts may inherit from more than one superconcept (multiple
inheritance). Sometimes it is impossible for a concept to be a subconcept of a given pair of
superconcepts at the same time (e.g., Dick cannot be both a Republican and a Democrat). If this
is the case, we specify that the incompatible superconcepts are to be disjoint.
Properties and statements. Properties are characteristics that we ascribe to things. We describe
things by making statements about them, e.g., “roses are red, violets are blue…”3. Statements
have at least two essential parts:

• the subject which refers to a thing (roses, violets)
• the predicate which refers to a property of that thing (are red, are blue).

Property hierarchies. Predicates are arranged in a separate hierarchy from things. If a concept
has a property, it implies that it also has the superproperty (e.g., has wheels implies has parts).
Every predicate has two parts:

• its most general subject (the most general concept in the concept hierarchy it applies to)
• its implicants (the more general predicates that it implies).

In DDUCKS, the value of a property may be directly asserted by the user or computed by a
script.
Attributes and related things. Some important specializations of the property hierarchy are
attributes, related things, parts, subsets, state and event predicates, and roles.
Attributes are particular kinds of predicates. User-created attributes will have one of two attribute
types as a superproperty: attributes with value or Boolean attributes. Attributes with value take
simple values like text, symbols, numbers, bowlines, dates, times, lists, or dictionaries as their
values. The system automatically interprets user entered values as the appropriate data type (e.g.,
22 June 1990 is interpreted as a Smalltalk object of class Date). Values can be specified for a
type or an individual. The values of the type are inherited to the individual, which may override
them. Boolean attributes are useful when the predicate is naturally unary (e.g., the verb is
intransitive (e.g., walks, moves) or the predicate is derived from an adjective (e.g., alive)).
Statements about related things take other concepts as their value.

3 Statements are roughly equivalent to Fulton’s notion of occurrences.

Facets. Facets provide additional descriptive information about statements. Built-in user-editable
facets include: status, statement comment, knowledge reference, cardinality, script, legal values,
and access parameters. Users can add their own facets.
Metaconcepts and their properties. The system distinguishes between properties ascribed to
the thing in the world and the properties of the concept representing the thing. For example:
 Concept of Boeing 747 (metaconcept)
 date created: 5 March 1992
 unique ID: @34355

 Boeing 747 (concept)
 date created: 1 January 1990
 ID: SN-59874-900
Both types and individuals have metaconcepts. The following metaconcept properties are
predefined: last modifier, date last modified, creator, date created, description, definition,
concept status, unique ID. Most of these are maintained automatically by the system. Additional
metaconcept properties can be defined by the user.
Terms. One of the unique strengths of CODE4 is its treatment of linguistic knowledge,
especially terminology, i.e., the association between concepts and the phrases that denote them.
CODE4 provides a high level of integrated support for lexical functions such as: defining a term,
comparing meanings of closely related terms, using a term in several senses, or using synonyms,
checking that a term is used consistently and correctly, changing a term throughout a knowledge
base, relating verbs to associated nouns (for example, extract, extractor), translating a term into
another language, and critiquing and assisting in choice of terms. A first order logic system and a
simple natural language system allow various types of syntactic and semantic checks to be
performed, if desired. A comprehensive lexicon allows references to concepts to be
automatically maintained and quickly accessed. We stress the importance of comprehensive
lexical support so that terminology can be carefully chosen and subsequently controlled.

2.3. The DDUCKS Modeling Environment
A rich conceptual model can only be managed successfully within a modeling environment that
allows users to view and modify the model in forms that are convenient and natural for them
(Norman, 1992). The difficulty is that people are language inventors more than mere language
users. Because the adequacy of a representation in real-world settings is a function of the
individuals involved, the situation, the kind of data available, and, most importantly, the
questions being asked, people have become adept at back-of-the-envelope innovation,
developing new notations on the fly that suit the task at hand. To be effective, conceptual
modeling environments must contain a rich set of visual and problem-solving primitives that can
be easily adapted and mapped to the conceptual model for different individuals and situations.
Several research groups are working on approaches that allow experts and knowledge engineers
to configure systems from a set of representational and problem-solving components (Bradshaw,

Ford, Adams-Webber, & Boose, in press; Gruber, in press; Marques, Dallemagne, Klinker,
McDermott, & Tung, 1992; Marques, Klinker, Dallemagne, Gautier, McDermott, & Tung, 1991;
Neches, Fikes, Finin, Gruber, Patil, Senator, & Swartout, 1991; Puerta, Tu, & Musen, in press;
Rappaport, 1991) . The goal is to create sophisticated object-management and end-user-oriented
configuration environments that use increasingly more modular and finely-grained components,
thus facilitating radical tailorability, embeddability, and principled reuse. In this section, we
provide an overview of elements of the DDUCKS architecture that aim to support these
objectives.
At The Boeing Company, we are currently developing problem-solving approaches and
ontologies that contain concepts useful in formally describing their work on applications in
enterprise modeling and integration (Bradshaw, Holm, Kipersztok, & Nguyen, 1992) , design
rationale (Bradshaw, Boose, & Shema, in preparation) , and group decision support (Boose,
Bradshaw, Koszarek, & Shema, 1992) . Additionally, Bradshaw and his colleagues are
formulating an approach to bone-marrow transplant patient support at the Fred Hutchinson
Cancer Research Center (Bradshaw, Chapman, & Sullivan, 1992; Bradshaw, Chapman, Sullivan,
Almond, Madigan, Zarley, Gavrin, Nims, & Bush, 1992) . The ontologies are being developed
within a modeling environment called DDUCKS (Decision and Design Utilities for
Comprehensive Knowledge Support) (Bradshaw, Ford, Adams-Webber, & Boose, in press)4.
CODE4 has been integrated as a back-end implementation of a conceptual modeling
representation for DDUCKS. DDUCKS is based on a three-schema architecture and the client-
server model (Bradshaw, Ford, & Adams-Webber, 1991; Ford, Bradshaw, Adams-Webber, &
Agnew, in press; van Griethusen & King, 1985) . In the future, some portions of the functionality
provided by CODE4 will optionally be provided by commercial database products (Figure 6).

4 Pronounced “ducks”

Figure 6. DDUCKS is based on a three-schema architecture and the client-server model.

We describe some of the features that allow DDUCKS to be easily adapted and mapped to the
conceptual model for different groups and situations.
The virtual notebook. Individual views containing particular expressions of a model are laid out
onto a page. Pages are organized within a virtual notebook, which helps individuals collect and
organize the diverse materials associated with a particular knowledge acquisition project. It also
helps manage changes between different versions and views of the model as it evolves. A new
notebook is typically opened in double-page mode, displaying a page on the right and one on the
left as in a paper notebook. The left page typically contains a table of contents view listing the
set of pages available in the notebook. The right page might contain a representation for some
portion of the knowledge base. Users move from page to page by selecting a “tab” on the side of
the notebook or selecting an item in the table of contents view. Alternatively, the user can query
the notebook to bring up pages meeting user-defined criteria. Figure 7 shows a virtual notebook
in single-page mode.

Graphical
Modeling

Views

Report and
Scripting

Views

Concept Model Server
Internal
CODE

Database
Accessor

Relational
Database
Accessor

O-O
Database
Accessor

Internal
CODE

Database
Relational

DB1
Relational

DB2
O-O
DB1

Translate
graphical
actions
to textual
scripting
language

Interpret
textual
scripting
language
directly

External
Conceptual

Physical

Figure 7. A virtual notebook showing a medical decision-making framing template.

The concept model., scripts, and filters The CODE4 knowledge base in DDUCKS is called the
concept model. The concept model provides a means semantic unification for information that
may be simultaneously portrayed from a number of perspectives in different views (e.g., grids,
concept maps, possibility tables, influence diagrams). In DDUCKS, we have defined an
integrated scripting and query language so that the environment can be customized by users.
Scripts are used for four things: making queries, modifying the structure and behavior of the
concept model and views programmatically, defining computed properties, and defining the
behavior of complex filters (explained below).
People observe and operate on the concept model indirectly by means of syntactic structures
implemented in the views. This indirectness can often lead to situations where we are misled in
our expectations about the state of the model (Figure 8):

Figure 8. The gulfs of execution and evaluation (Norman, 1992) .

Goals
What we

want to happen

“The gulfs of execution and evaluation refer to the mismatch between our internal goals
and expectations and the availability and representation of information about the state of
the world [or, in our case, the model] and how it might be changed. The gulf of execution
refers to the difficulty of acting upon the [modeling] environment (and how well the
artifact supports those actions). The gulf of evaluation refers to the difficulty of assessing
the state of the [modeling] environment (and how well the artifact supports the detection
and interpretation of that state)…
We can conceptualize the artifact and its interface in this way. A person is a system with
an active, internal representation. For an artifact to be usable, the surface representation
must correspond to something that is interpretable by the person, and the operations
required to modify the information within the artifact must be performable by the user.
The interface serves to transform the properties of the artifact’s representational system to
those that match the properties of the person.” (Norman, 1992)

There are two obvious ways to minimize mismatch between the user and the representations
embodied in the interface: one is by designing the representations so that they match the user’s
way of thinking about the model; the other is through mental effort and training on the part of the
user to understand the problem in terms of the available representations. Because it is impossible
in our setting to assume that users will be willing or able to conform to our representational
standard, only the former alternative is really an option.
We attempt to bridge the gulfs of execution and evaluation by providing tools to help users
design modeling frameworks and views that fit their personal and organizational requirements.
To do this, they must define an explicit specification of how concept model elements, user
gestures, and views are mapped to one another (Neches, Foley, Szekely, Sukaviriya, Luo,
Kovacevic, & Hudson, 1992) . Our goal is to minimize the effort typically required to write
procedural code to tailor representations to user needs—we would like creating a new
interpretation model and view to require no greater skill in programming than what a user now
needs to know to create a macro or chart within a spreadsheet. Our intent is to provide
straightforward means to extend a set of generic models declaratively.5 Since interpretation
models and views are represented explicitly as concepts in the concept model, default parameters
can be filled-in automatically by inheritance unless a more specialized value is given.
Our general approach in mapping among interpretations and among expressions of the model is
similar in many respects to the tool abstraction approach advocated by (Garlan, Kaiser, &
Notkin, 1992) . The goal is to allow functionality to be enhanced incrementally and
modifications to be developed independently in situations where traditional data abstraction
approaches are insufficient. Spreadsheets and production systems approximate these objectives:
spreadsheets can be enhanced incrementally by adding new equations that operate on existing
data; in principle, rules in logic-based production systems can also be developed independently
and added to the knowledge base. The essential characteristic of systems that support tool

5 Some knowledge of scripting may be still be needed to create more complex interpretation
models and views.

abstraction is that they contain a collection of cooperating toolies that provide for mutual
notification of changes when shared data structures are modified.
For interpretation model type and each view type, we have defined a set of abstract tools called
filters. Changes made on a page pass through filters to modify the concept model (Figure 9).
Other affected pages are updated through their associated filters. Filter behavior is determined by
user-definable scripts, which are executed in response to a change or update request.

Figure 9. Filters determine how the concept model will be interpreted and expressed in a view.

They also determine how actions in a view will be mapped to the concept model.
There are two basic types of filters. Interpreters determine which domain concepts are relevant
to a view and how those domain concepts (e.g., employee, factory, inspection) will be mapped to
interpretation-model-specific concepts (e.g., entity, alternative, activity). Expressors determine
how and where interpretation model elements are to be expressed as symbolic, syntactical
elements within a particular view. Similar kinds of filters determine how actions in the view
affect the concept model. New kinds of views can be created on the fly by adding new filters or
modifying scripts of existing ones.
3. PRELIMINARY RESULTS IN CREATING SHARABLE ONTOLOGIES
(Alexander, Freiling, Shulman, Rehfuss, & Messick, 1988) introduced ontological analysis as a
knowledge modeling technique for the preliminary analysis of a problem-solving domain. Since
that time, several groups of researchers have carried the theme onward, emphasizing the central
role of ontologies in facilitating knowledge base reusability (Akkermans, van Harmelen,
Schreiber, & Wielinga, in press; Gruber, 1992a; Gruber, 1992b; Lenat & Guha, 1990; Neches,
Fikes, Finin, Gruber, Patil, Senator, & Swartout, 1991; Skuce & Monarch, 1990) . Well-designed
conceptual models can be shared or reused by different tools and applications. For many well-
established domains, there is enough similarity between terms and concepts used by various
experts that common libraries of ontologies will no doubt flourish. On the other hand, for
domains where expert knowledge is highly idiosyncratic, explicit specification of conceptual

Virtual Notebook
Concept Model

Pages

Expressors

Visible to User Happens behind the scenes

Change

Updates

Interpreters

commitments can promote mutual understanding, even when consensus is neither possible nor
desirable.6
Besides making knowledge sharing easier, careful design of the conceptual terms and definitions
helps developers and users of the system. The result of ontological analysis is a rich conceptual
model of static, dynamic, and epistemic aspects of the problem. The model can be extended by
designers and users of the system and applied to problem-solving. Our experience confirms that
terminological confusion breeds conceptual confusion (and vice versa). Such confusion tends to
become more probable the higher one goes in a concept hierarchy. For example, it is usually
easier to reach consensus on the meaning of the more specialized terms like pencil than on
general terms like object, or entity. Hence the most general concepts are the ones we most need
to share, yet also the most difficult to agree on.
We anticipate that research on very general ontologies will eventually result in a consensus,
although this may be many years away. More specific ontologies use knowledge from more
general ontologies, therefore the closer to consensus the higher-level ontologies can be brought,
the more effective will be the sharing of lower level ontologies.
At present, the research community is far from agreement as to what the concepts are, let alone
what to name them. Our approach is therefore three-fold:

1. Develop and evaluate concept specifications for specific domains of interest and
problem-solving approaches;

2. Separately, try to develop a set of top-level, general ontological concepts and
terminology for future agreement;

3. Evaluate mechanisms to promote knowledge sharing among similarly-minded
researchers.

Different classes of ontologies are likely to be maintained by different people. The developers of
a tool are likely to be the ones maintaining the specifications for the essential primitives in the
conceptual model; modeling and problem-solving methodology experts will maintain the
concepts and algorithms that concern them; user groups will define standards for domains and
applications to enhance communication among them; and specific users will maintain concepts
in the model that describes their particular situation. A layered approach seems well-suited to
this kind of tailoring within a modeling environment.
(Musen, 1989) was one of the first to present an explicit, general approach to creating tailorable
knowledge modeling tools. Knowledge modeling tools are tailored using a meta-level tool to edit
a domain-independent conceptual model. The meta-level tool, PROTEGE, provides a system to
generate knowledge editors tailored for various classes of treatment plans. Physician experts can
then use the knowledge editors created by PROTEGE to develop knowledge bases (e.g., OPAL)
that encode specific treatment plans in their medical specialty; the resulting systems (e.g.,
ONCOCIN) could then be used in turn by attending physicians to obtain therapy
recommendations for a particular patient. PROTEGE-II generalizes the PROTEGE architecture

6 See (Ford & Adams-Webber, 1992) and (Ford & Agnew, 1992) for discussions of the dangers
of co-mingling models of idiosyncratic experts within the same knowledge base.

to allow for alternate problem solving methods and interface styles (Puerta, Tu, & Musen, in
press) .
Our objective in DDUCKS is to increase reusability by generalizing Musen’s approach. It is
useful to think of DDUCKS in terms of four “layers” of functionality: workbench, shell,
application, and consultation (Figure 10)7. Starting with any layer in the system, a user can
produce a set of tools, models, ontologies, and representations that can be used to assist in
configuration of a more specialized system at the layer below. See (Bradshaw, Chapman,
Sullivan, Almond, Madigan, Zarley, Gavrin, Nims, & Bush, 1992; Bradshaw, Holm, Kipersztok,
& Nguyen, 1992) for specific descriptions of the kinds of information besides ontologies that
might exist in a given layer for particular applications.

Figure 10. Four layers of functionality facilitate reusability in DDUCKS (inspired by figure

from (Musen, 1989)).
In the following subsection, we discuss how different classes of ontologies are developed within
the tools: top level ontologies with very general concepts, ontologies with modeling concepts,
and ontologies for particular domains of application (3.1). Then we explain how theories,
contexts, and templates are used to partition and manage groups of concepts (3.2). Finally, we
describe how Ontolingua (Gruber, 1992a; Gruber, 1992b) could be used as a mechanism to
make ontology sharing possible (3.3).

3.1. Important Kinds of Ontologies in DDUCKS

7 The four layers are simply a convenient abstraction that seem to apply to a number of
applications. In reality, application configuration and tailoring is a continuous rather than
discrete process which admits an unlimited number of “layers”.

Workbench

Shell

Application

Situation-Specific Model

Programming
Environment

Workbench
Builders

Methodology
Experts

Domain
Experts

Clients

Knowl. Modeling
Facilities

Client Support
Facilities

• Methodology- independent
 problem-solving task models
• Generic interaction paradigms
 and widgets
• Methodology-independent
 ontology (schema description
 primitives)
• Application-configuration
 process model
• Standard library of inference
 types and functions

• Application-specific problem-
 solving task models
• Application-specific mediating
 representations
• Application-specific ontology
 (modeling primitives)
• Application-specific model-
 building process model
• Extensions to inference and
 function library

• Situation-specific problem-solving task models
• Situation-specific mediating representations
• Situation-specific model components
• Situation-specific facts and assertions
• Situation-specific functions and inferences

• Methodology-specific
 problem-solving task models
• Methodology-specific
 mediating representations
• Methodology-specific
 ontology (schema)
• Methodology-specific
 model-building process model
• Extensions to inference and
 function library

Knowl. Modeling
Facilities

3.1.1. Very General Ontologies
An important area for of work concerns the most general categories that ontologies can have,
notions like: thing, object, entity, property, attribute, event, process, state, situation, collection,
and relation, to name a few favorites. At the moment, everyone uses these concepts and terms,
but: a) they probably use them in very different ways, and b) they cannot tell anyone else what
they mean by them. A well known example is the top of the Cyc ontology, which we find
difficult to understand from the published descriptions. (Skuce, in pressa) .
We believe that such notions can best be clarified by studying linguistic and psychological data.
An important ontology based on linguistic research is the Penman ontology (Bateman & Kasper,
1990) . This ontology, derived from Halliday's studies of English, is well-documented, with
reasonable if minimal descriptions of each of some 200 categories. Other linguistically-based
efforts include Miller’s WordNet ontology (Miller, 1990) , and the semantic analysis of William
Frawley (Frawley, 1992) . Skuce has been working on an empirical approach to very general
ontologies for a number of years. The goal is to prepare an initial proposal with approximately
fifty categories of the kind listed in the previous paragraph. The current minimal set of
conceptual primitives (e.g., concept, property, term) in CODE4 were described in Section 2.2.

3.1.2. Modeling Ontologies
While the domain ontologies are designed to be relatively neutral with respect to a particular
modeling framework, the modeling ontologies are meant to capture a particular theoretical or
practical point-of-view. In other words, the modeling ontologies characterize the roles that
domain concepts play within a particular modeling framework. The knowledge acquisition
community has a long and successful history in analyzing knowledge roles as they relate to
various problem-solving methods and tasks (Marques, Klinker, Dallemagne, Gautier,
McDermott, & Tung, 1991; Puerta, Tu, & Musen, in press) . We would like to the analysis of
knowledge roles broadened to include not only the abstract function that model elements play
computationally in deriving solutions to a problem, but also the roles played in the particular
diagrammatic notations describing the model to facilitate communication and mental
computation (Chandrasekaran, Narayanan, & Iwasaki, in press; Larkin & Simon, 1987) . After
all, we have argued above that insight may well be the most important outcome of a knowledge
acquisition project.
Sometimes a modeling methodology embodies both a solution algorithm and one or more
particular graphical notations, as decision analysis typically requires either decision trees or
influence diagrams (Howard & E., 1984) . Sometimes a modeling approach consists of a
standard interaction paradigm with an application semantics that is largely user-supplied, as in a
spreadsheet. Often at The Boeing Company, people use modeling methodologies that merely
define a set of standard drawing conventions for informal diagrams, such as process flow charts.
We are performing an analysis of the knowledge acquisition, decision support, and design
rationale tools we have developed over the past several years to understand the concepts and
assumptions, implicit and explicit, they embody. We have found that the process of developing a
formal modeling ontology for our tools is greatly increasing our understanding of them. As we
increase our understanding of the ontological commitments of our own framework, we plan to
develop and evaluate similar modeling ontologies derived from other perspectives.

In an application of DDUCKS to airplane design and manufacturing, we have developed an
ontology appropriate to describing a large, complex business enterprise. The highest levels of the
modeling ontology for conceptual modeling are based largely on the work of (Tauzovich &
Skuce, 1990) . Within the ontology, a model is defined to be the most all-inclusive object of
modeling at the highest conceptual level. All other model concepts are either somehow
subordinate to the model or external to it. Subtypes of model are used to aggregate the particular
types of concepts useful in creating that type of model (e.g., an enterprise model representing a
company or university; or a decision analysis model comprised of information, preferences, and
alternatives). Thus a model type is a definition of the kinds of facts of interest to a certain
community for a given purpose, and from which particular descriptions can be built. The union
of the description and all concepts external to it is called the universe of discourse. The model
type determines the rules for determining how appropriate domain model components are to be
interpreted before they are optionally expressed in a view.
The use of the term model to describe something conveys the idea of a dependency between the
thing being modeled and the model of the thing. This dependency relation can be recursive, as
when a model of something becomes itself a model for something else. Whether or not
something is seen as a model also depends on a particular point of view: When we are viewing
something as a model in relation to something else, our concern is how well the model
characterizes of the things being modeled and the facts known about them. When this is the
concern the language used to build the model is not important as long as each user of the model
is able to understand the expressions of that language and, if desired, to translate it without loss
of information to the language in which that user would prefer to work (Fulton, Zimmerman,
Eirich, Burkhart, Lake, Law, Speyer, & Tyler, 1991) .
As a subtype of concept, we have defined the root of the hierarchy of primitives of which models
are composed: model concept (Figure 11). We distinguish two subtypes of model concept: major
model concept and minor model concept. Major model concepts are model entities, model
relationships, and model situations; minor model concepts are model domains, model properties,
and model constraints.

Figure 11. The top of a modeling concept ontology used for an airplane design and

manufacturing application..

Model entities are described as follows:
“An entity is a major concept that represents a class of individual things, persons, places,
organizations, projects, etc. which are of relevance to the model. Instances of entities
come into existence and cease to exist. An entity has at least one identifier (also termed
key property or identifying property) by which instances of the entity are uniquely
identified; it may have other properties, some of which may change over time. In natural
languages, entities are nearly always named by nouns. The use of the singular for entity
names is encouraged.” (Tauzovich & Skuce, 1990)

Model entities are typically associated with each other by virtue of the specific roles they play in
a common relationship. Model relationships are best described as a sort of associative entity:

“An associative entity [model relationship] is an entity that is introduced to represent a
connection between (or among) two or more entities… This connection is being treated
as an entity rather than as a relationship, which is done typically to associate or aggregate
entities, to eliminate many-to-many relationship, or to allow the connection to have other
than solely pre-defined properties.” (Tauzovich & Skuce, 1990)

Role properties are used to associate relationships with other concepts. For example, in a sale
relationship, a role may be defined for a buyer, a seller, and a thing being sold. The particular
buyer, seller, and thing sold for that relationship comprise the relationship’s participants.
Model situations (states of affairs) are used to describe a finite configuration of some aspect of
the world (Barwise & Perry, 1983; Sowa, 1984; Sowa, 1992) . A situation takes place or exists at
some time and location (except for abstract situations, which have no time, location, or causes.
Abstract situations are useful in formal subjects, e.g., the notion of environment in a
programming language). Situations have a number of participants. Relationships like cause and
purpose can be associated with them. They can usually be denoted by a sentence implying a time
and a place. A situation may be relatively static, or it may include dynamic processes and events.
Properties describe an aspect of some other concept (see Section 2.2 above). Domains are minor
concepts that are used to define a set of values for certain properties (e.g., integers from 1-100;
{male, female}). Constraints are specifications of relations and values that must be maintained.

Figure 12. The semantics of a mediating representation (model view) are defined by expressors

that map between a kind of interpretation model and particular interaction paradigm.
The semantics of a mediating representation (model view) are defined by expressors that map
between a kind of interpretation model and particular interaction paradigm. At present, concepts
that stand for six interaction paradigms have been defined in the ontology (tables, graphs, trees,
outlines, lists, and text). The same model type may be expressed by in terms of different
interaction paradigms (e.g., activity models as graphs vs. outlines; see Figure 12); conversely, the
same interaction paradigm may be reused to create an expression for two different interpretation
models (e.g., graph interaction paradigm applied to show influence diagrams or activity graphs).
Subtypes of model views defined in the ontology inherit by default the properties and behavior
of their supertypes.

3.1.3. Domain Ontologies

Activity
Model

Decision
Analysis
Model

Personal
Construct

Model Table Graph Outline

Repertory
Grid View

Influence
Diagram

View

Activity
Graph
View

Activity
Outline
View

Expressors

Interpretation Models Interaction Paradigms

Mediating Representations
(Model Views)

Figure 13. Fragment of a DDUCKS concept model for the airplane design and manufacturing

application.
In conjunction with other research groups interested in knowledge sharing issues, we are
participating in an effort to develop ontologies for specific domains of interest. For example, at
Boeing we have been developing ontological primitives in DDUCKS to represent knowledge of
the airplane design and manufacturing enterprise (eQuality; see Figure 13) (Bradshaw, Holm,
Kipersztok, & Nguyen, 1992) . At the Fred Hutchinson Cancer Research Center, we are
interested in representing knowledge about bone-marrow transplant follow-up care (Bradshaw,
Chapman, & Sullivan, 1992; Bradshaw, Chapman, Sullivan, Almond, Madigan, Zarley, Gavrin,
Nims, & Bush, 1992) . Others have begun projects that will result in ontologies relevant to
disciplines such as process planning, software engineering, circuit layout, and device modeling
(Gruber, Tenenbaum, & Weber, 1992) .
Domain experts and knowledge engineers jointly define interpretors that map the domain model
to an interpretation model. Domain-specific interpretation models and mediating representations
may also be defined to fit the needs of specific user groups.

Figure 14. The domain model mapped to an interpretation model and expressed in a domain-

specific view.

3.2. Theories and Contexts
Practical concerns about the engineering of large systems have led to the development of
techniques for creating and operating on multiple partitions of the knowledge base (Gruber,
1992a; Guha, 1991) . Each partition, or theory, constitutes a set of axioms tailored for a
particular domain or purpose. Each theory is associated with a context (McCarthy, 1987) that
describes, among other things, the set of assumptions made by the theory.
Within DDUCKS, groups of concepts are organized into theories. Each concept must belong to
one or more theories. Theories are semi-permeable partitions of the concept model. Theories
themselves are concepts, which allows for relationships to be defined between a theory and other
concepts. Individual theories are organized into hierarchies of supertheories and subtheories. By
default, a subtheory imports all concepts of its supertheories. Theories can optionally “import”
(i.e., “lift”) and “export” concepts selectively.

3.3. A Mechanism for Sharing
The rate of progress on ontological issues in the research community will belargely determined
by how well knowledge can be shared. Ontological research is currently shared very little, and
where sharing takes place, it is usually either a) in the form of paper reports that take time to
distribute and get outdated rapidly, or b) among researchers using some specific piece of not-
widely-distributed research software. To facilitate development of ontologies it will be necessary
for determine how divers software tools can be facilitated to exchange their knowledge. It will
also be necessary to determine conceptual formats, i.e. exactly what pieces of information are
necessary to convey to accurately communicate ontological concepts among a community of
researchers.
Gruber’s work on Ontolingua (Gruber, 1992a; Gruber, 1992b) currently provides the most
promising mechanism for sharing ontologies between different tools and formalisms. Ontolingua
extends the knowledge interchange format (KIF; (Genesereth & Fikes, 1992)) defined by the

Robotic
Arm

Model

Personal
Construct

Model

Table
Interaction
Paradigm

Trade Study
View

Interpretor

Domain-Specific
Mediating

Representation

Domain
Model

Expressor

DARPA knowledge sharing effort with standard primitives for defining classes and relationships,
and organizing knowledge in object-centered hierarchies with inheritance. Ontolingua facilitates
the translation of KIF-level sentences to and from forms that can be used by various knowledge
representation systems (currently LOOM, Epikit, Algernon, and a canonical form of KIF). We
are working with Gruber to define an Ontolingua interface for CKB, the CODE4 knowledge base
file format (Lethbridge & Skuce, 1992a) .
The goal is to use the Ontolingua project as a basis for processing and distributing the ontologies.
As good examples become available, the Sharing and Reuse of Knowledge Bases subgroup of
the knowledge sharing effort can coordinate evaluations and experiments. In this way, we can
pool our results with those of projects with similar goals.
4. CONCLUSION
In order to facilitate sharing of ontologies a number of key research issues must be addressed.

• Knowledge primitives: Of what primitive elements is the knowledge composed? We
take the approach that all elements are to be considered as concepts, and consistent
with the CODE4 system we categorize concepts. into types, instances, statements,
properties, terms, metaconcepts, etc. Simply saying that the primitives shall be some
set of “predicates” does not answer the difficult question of where we get this set from.
This is where linguistic and terminological research becomes especially relevant.

• Standardization: Should there be only one format or more than one? The types of
knowledge in ontologies developed within the research community may have special
properties that differ significantly from knowledge exchanged in other communities.
Some may consider these differences mandate different interchange standards. We
believe that the differences are not great enough, and the benefits of a single standard
are of over-riding importance.

• Inference primitives: What are the basic semantics of the exchanged knowledge? For
example, in CKB format some basic rules of inheritance are assumed. If somebody
attempted to process a CKB knowledge base but assumed different or no inheritance
rules, the results of the processing would likely be invalid (or at the very least,
substantial knowledge would be lost). We believe it is necessary to have an absolute
minimum number of inference primitives otherwise each system will be forced to
reimplement every other system. In order to allow the exchange of knowledge between
systems that have differing inference primitives, we believe it is important to be able to
exchange informal knowledge. Such knowledge is only manipulated by systems that
recognize it. Informal knowledge can also facilitate human understanding by allowing
such things as comments.

• Physical format: Obviously it will be necessary to develop a common syntax, but there
are a number of meta-issues upon which to be agreed: Should compactness be a
priority? What about human readability? Should the structure be hierarchical or flat?
Should it look like predicate logic or some extension thereto such as conceptual graphs
(Sowa, 1984)? How are cross-references represented: by unifiable symbols (English
words), by indexes, or by pointers?

We have chosen our own positions on the above issues, and so have others. Now the issues have
been raised we anticipate a lively debate. However, we hope existing formats for sharing
knowledge will begin to accelerate the exchange of ontologies. (grounded in real exchange, real
problems)
We hope that our initial efforts at developing ontologies and sharing mechanisms will spur other
researchers to make similar efforts, with the goal of increasing knowledge sharing and reuse
within the research community.
ACKNOWLEDGMENTS
We express our appreciation to Russell Almond, Miroslav Benda, Guy Boy, Kathleen Bradshaw,
Jim Fulton, Cindy Holm, Earl Hunt, Oscar and Sharon Kipersztok, Cathy Kitto, David Madigan,
Allen Matsumoto, Thom Nguyen, Steve Poltrock, Bob Schneble, Doug Schuler, Kish Sharma,
Dave Shema, Bruce Wilson, and Debra Zarley for their contributions and support. This work has
benefited from discussions with numerous colleagues in the knowledge acquisition community
over the years, in particular Ken Ford, Brian Gaines, Tom Gruber, Mark Musen, Mildred Shaw,
John Sowa, and Brian Woodward.
REFERENCES
Akkermans, H., van Harmelen, F., Schreiber, G., & Wielinga, B. (in press). A formalisation of knowledge-level models for

knowledge acquisition. In K. M. Ford & J. M. Bradshaw (Eds.), Knowledge Acquisition as a Modeling Activity New York:
John Wiley.

Alexander, J. H., Freiling, M. J., Shulman, S. J., Rehfuss, S., & Messick, S. L. (1988). Ontological analysis: An ongoing
experiment. In J. H. Boose & B. R. Gaines (Eds.), Knowledge Acquisition Tools for Expert Systems (pp. 25-37). London:
Academic Press.

Barwise, J., & Perry, J. (1983). Situations and Attitudes, Cambridge, MA: MIT Press.
Bateman, J., & Kasper, R. (1990). A General Organization of Knowledge for Natural Language Processing: The Penman Upper

Model, Marina del Rey, CA: USC/Information Sciences Institute.
Boose, J. H., Bradshaw, J. M., Koszarek, J. L., & Shema, D. B. (1992). Better group decisions: Using knowledge acquisition

techniques to build richer decision models. Proceedings of the Knowledge Acquisition for Knowledge-Based Systems
Workshop (KAW-92), . Banff, Alberta, Canada:

Borgida, A., Brachman, R. J., McGuinness, D. L., & Resnick, L. A. (1989). CLASSIC: A structural data model for objects. J.
Clifford, B. Lindsay, & D. Maier (Ed.), 1989 ACM SIGMOD International Conference on the Management of Data, . ACM
Press: New York.

Bradshaw, J. M., & Boose, J. H. (1990). Decision analysis techniques for knowledge acquisition: Combining information and
preferences using Aquinas and Axotl. In J. H. Boose & B. R. Gaines (Eds.), Progress in Knowledge Acquisition for
Knowledge-Based Systems London: Academic Press.

Bradshaw, J. M., & Boose, J. H. (1992). Mediating representations for knowledge acquisition No. Seattle Washington:Boeing
Computer Services.

Bradshaw, J. M., Boose, J. H., & Shema, D. B. (in preparation). A knowledge acquisition approach to design rationale. In J.
Carroll & T. Moran (Eds.), Design Rationale Hillsdale, N.J.: Lawrence Erlbaum.

Bradshaw, J. M., Chapman, C. R., & Sullivan, K. M. (1992). An application of DDUCKS to bone-marrow transplant patient
support. Working Notes of the AAAI 1992 Artificial Intelligence in Medicine Session of the Spring Symposium, . Stanford,
California:

Bradshaw, J. M., Chapman, C. R., Sullivan, K. M., Almond, R. G., Madigan, D., Zarley, D., Gavrin, J., Nims, J., & Bush, N.
(1992). KS-3000: An application of DDUCKS to bone-marrow transplant patient support. Submitted to the Sixth Annual
Florida AI Research Symposium (FLAIRS ’93), . Ft. Lauderdale, FL:

Bradshaw, J. M., Covington, S. P., Russo, P. J., & Boose, J. H. (1991). Knowledge acquisition techniques for decision analysis
using Axotl and Aquinas. Knowledge Acquisition, 3(1), 49-77.

Bradshaw, J. M., Ford, K. M., & Adams-Webber, J. R. (1991). Knowledge representation for knowledge acquisition: A three-
schemata approach. Proceedings of the Sixth Knowledge Acquisition for Knowledge-Based Systems Workshop, . Banff,
Alberta, Canada:

Bradshaw, J. M., Ford, K. M., Adams-Webber, J. R., & Boose, J. H. (in press). Beyond the repertory grid: New approaches to
constructivist knowledge acquisition tool development. In K. M. Ford & J. M. Bradshaw (Eds.), Knowledge Acquisition as a
Modeling Activity New York: John Wiley.

Bradshaw, J. M., Holm, P., Kipersztok, O., & Nguyen, T. (1992). eQuality: An application of Axotl II to process management. In
T. Wetter, K.-D. Althoff, J. H. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Current Developments in
Knowledge Acquisition: EKAW-92 Berlin/Heidelberg: Springer-Verlag.

Chandrasekaran, B., Narayanan, N. H., & Iwasaki, Y. (in press). Reasoning with diagrammatic representations: A report on the
AAAI Spring Symposium, March 25-27, 1992. AI Magazine.

Clancey, W. J. (in press). The knowledge level reinterpreted: Modeling socio-technical systems. In K. M. Ford & J. M. Bradshaw
(Eds.), Knowledge Acquisition as a Modeling Activity New York: John Wiley.

Ford, K. M., & Bradshaw, J. M. (in press). Knowledge Acquisition as Modeling, New York: John Wiley.
Ford, K. M., Bradshaw, J. M., Adams-Webber, J. R., & Agnew, N. M. (in press). Knowledge acquisition as a constructive

modeling activity. In K. M. Ford & J. M. Bradshaw (Eds.), Knowledge Acquisition as a Modeling Activity New York: John
Wiley.

Frawley, W. (1992). Linguistic Semantics, Hillsdale, N.J.: Lawrence Erlbaum.
Fulton, J. A. (1992). Semantic Unification and the Meaning Triangle No. Boeing Computer Services.
Fulton, J. A., Zimmerman, J., Eirich, P., Burkhart, R., Lake, G. F., Law, M. H., Speyer, B., & Tyler, J. (1991). The Semantic

Unification Meta-Model: Technical Approach No. Dictionary/Methodology Committee of the IGES/PDES Organization, ISO
TC184/SC4.

Gaines, B. R. (1991). Empirical investigation of knowledge representation servers: Design issues and applications experience
with KRS. SIGART Bulletin, 2(3), 45-56.

Gaines, B. R., Shaw, M. L. G., & Woodward, J. B. (in press). Modeling as a framework for knowledge acquisition methodologies
and tools. In K. M. Ford & J. M. Bradshaw (Eds.), Knowledge Acquisition as a Modeling Activity New York: John Wiley.

Garlan, D., Kaiser, G. E., & Notkin, D. (1992). Using tool abstraction to compose systems. Computer, June, p. 30-38.
Genesereth, M. R., & Fikes, R. (1992). Knowledge Interchange Format Version 3.0 Reference Manual No. Logic Group Report,

Logic-92-1). Stanford University Department of Computer Science.
Gruber, T. R. (1991). The role of common ontology in achieving sharable, reusable knowledge bases. In J. A. Allen, R. Fikes, &

E. Sandewall (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Second International
Conference (pp. 601-602). San Mateo, CA: Morgan Kaufmann.

Gruber, T. R. (1992a). Ontolingua: A mechanism to support portable ontologies, Version 3.0 No. Stanford Knowledge Systems
Laboratory Technical Report KSL 91-66). Stanford University Department of Computer Science.

Gruber, T. R. (1992b). A translation approach to portable ontology specifications. Proceedings of the Seventh Knowledge
Acquisition for Knowledge-Based Systems Workshop, . Banff, Alberta, Canada:

Gruber, T. R. (in press). Model formulation as a problem solving task: Computer-assisted engineering modeling. In K. M. Ford &
J. M. Bradshaw (Eds.), Knowledge Acquisition as a Modeling Activity New York: John Wiley.

Gruber, T. R., Tenenbaum, J. M., & Weber, J. C. (1992). Toward a knowledge medium for collaborative product development. J.
S. Gero (Ed.), Proceedings of the Second International Conference on Artificial Intelligence in Design, . Pittsburgh, PA:

Guha, R. V. (1991). Contexts: A formalization and some applications No. Technical Report Number ACT-CYC-423-91). MCC.
Guha, R. V., & Lenat, D. B. (1990). Cyc: A midterm report. AI Magazine, p. 33-58.
Haiman, J. (1985). Natural Syntax, Cambridge: Cambridge University Press.
Howard, R. A., & E., M. J. (1984). Influence diagrams. In R. A. Howard & J. E. Matheson (Eds.), Readings on the Principles and

Applications of Decision Analysis Menlo Park, California: Strategic Decisions Group.
Jackendoff, R. (1983). Semantics and Cognition, Cambridge, MA: MIT Press.
Kaplan, A. (1963). The Conduct of Inquiry, New York: Harper and Row.
Lakoff, G. (1987). Women, Fire, and Dangerous Things: What Categories Reveal About the Mind, Chicago: University of

Chicago Press.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65-99.
Lenat, D. B., & Guha, R. V. (1990). Building Large Knowledge-based Systems, Reading, MA: Addison-Wesley.

Lethbridge, T. C. (1991). Creative knowledge acquisition: An analysis. Proceedings of the 1991 Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, . Banff, Canada:

Lethbridge, T. C., & Skuce, D. (1992a). Informality in knowledge exchange. Working Notes of the AAAI-92 Knowledge
Representation Aspects of Knowledge Acquisition Workshop, 92.

Lethbridge, T. C., & Skuce, D. (1992b). Integrating techniques for conceptual modeling. Proceedings of the Seventh Annual
Knowledge Acquisition for Knowledge-Based Systems Workshop, . Banff, Alberta, Canada:

Marques, D., Dallemagne, G., Klinker, G., McDermott, J., & Tung, D. (1992). Easy programming: Empowering people to build
their own applications. IEEE Expert, June, 16-29.

Marques, D., Klinker, G., Dallemagne, G., Gautier, P., McDermott, J., & Tung, D. (1991). More data on usable and reusable
programming constructs. Proceedings of the Sixth Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,
(pp. 6-11). Banff, Canada:

McCarthy, J. (1987). Generality in artificial intelligence. Communications of the ACM, 30(12), 1030-1035.
Miller, G. (1990). WordNet: an on-line lexical database. International Journal of Lexicography, 3(4).
Moore, E. A., & Agogino, A. M. (1987). INFORM: An architecture for expert-directed knowledge acquisition. International

Journal of Man-Machine Studies, 26, 213-230.
Musen, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition Tools, San Mateo, CA: Morgan

Kaufmann.
Mylopoulos, J. (1991). Conceptual modeling and Telos No. Technical Report DKBS-TR-91-3). University of Toronto

Department of Computer Science.
Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout, W. R. (1991). Enabling technology for knowledge

sharing. AI Magazine, p. 36-55.
Neches, R., Foley, J., Szekely, P., Sukaviriya, P., Luo, P., Kovacevic, S., & Hudson, S. (1992). Knowledgeable development

environments using shared design models No. USC/Information Sciences Institute and Georgia Institute of Technology.
Norman, D. A. (1992). Cognitive artifacts. In J. M. Carroll (Eds.), Designing Interaction: Psychology at the Human-Computer

Interface (pp. 17-38). Cambridge: Cambridge University Press.
Ogden, C. K., & Richards, I. A. (1923). The Meaning of Meaning, New York: Harcourt, Brace, and Company.
Perez, S. (1992). Model unification for data repositories No. Technical Report Number X3H4.6/92-001, Version 0.2). American

National Standards Institute (ANSI).
Puerta, A., Tu, S., & Musen, M. (in press). Modeling tasks with mechanisms. In K. Ford & J. M. Bradshaw (Eds.), Knowledge

Acquisition as a Modeling Activity New York: John Wiley.
Rappaport, A. (1991). A theory of local and interstitial knowledge. Proceedings of the Sixth Knowledge Acquisition for

Knowledge-Based Systems Workshop, . Banff, Alberta, Canada:
Reddy, M. (1979). The conduit metaphor: A case of frame conflict in our language about language. In A. Ortony (Eds.),

Metaphor and Thought Cambridge: Cambridge University Press.
Rothenberg, J. (1989). The nature of modeling. In L. E. Widman, K. A. Loparo, & N. R. Nielsen (Eds.), Artificial Intelligence,

Simulation, and Modeling New York: John Wiley.
Skuce, D. (1991). A frame-like knowledge acquisition tool integrating abstract data types and logic. In J. Sowa (Eds.), Principles

of Semantic Networks San Mateo, CA: Morgan Kaufmann.
Skuce, D. (in pressa). A review of ‘Building large knowledge-based systems’ by D. Lenat and R. Guha. Artificial Intelligence.
Skuce, D. (in pressb). A wide spectrum knowledge management system. Knowledge Acquisition Journal.
Skuce, D., & Lethbridge, T. C. (submitted for acceptance). A knowledge representation for interactive knowledge management.

Proceedings of the Third International Conference on the Principles of Knowledge Representation and Reasoning, .
Cambridge, MA:

Skuce, D., & Monarch, I. (1990). Ontological issues in knowledge base design: Some problems and suggestions. Proceedings of
the Fifth Knowledge Acquisition for Knowledge-Based Systems Workshop, . Banff, Alberta, Canada:

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine, Reading, MA: Addison-Wesley.
Sowa, J. F. (1991). Towards the expressive power of natural languages. In J. F. Sowa (Eds.), Principles of Semantic Networks

(pp. 157-189). San Mateo, CA: Morgan Kaufmann.

Sowa, J. F. (1992). Representing and reasoning about contexts. In S. C. Shapiro, J. Barnden, D.
Kumar, J. P. Martins, & J. F. Sowa (Ed.), Working Notes for the Propositional Knowledge

Representation Symposium of the AAAI Spring Symposium pp. 133-142). Stanford, CA:
Stanford University.

Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information systems architecture. IBM
Systems Journal, 31(3), 590-616.

Tauzovich, B., & Skuce, D. (1990). A general taxonomy for conceptual data modeling No. Cognos.
Thimbleby, H. (1990). User Interface Design, Reading, MA: Addison-Wesley.
van Griethusen, J. J., & King, M. H. (1985). Assessment guidelines for conceptual schema language proposals No. ISO-

TC97/SC21/WG5-3). International Standards Organization.
Winograd, T., & Flores, F. (1986). Understanding Computers and Cognition, Norwood, N.J.: Ablex.
Wittgenstein, L. (1974/1918). Tractatus logico-philosophicus, Atlantic Highlands, N.J.: Humanities Press.

